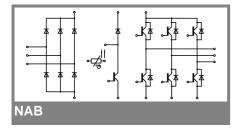
SKiiP 02NEB066V1

MiniSKiiP[®] 1

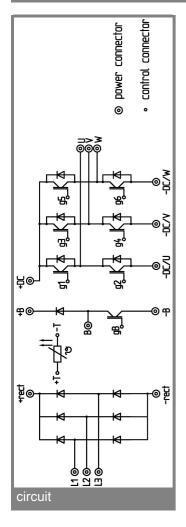
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 02NEB066V1

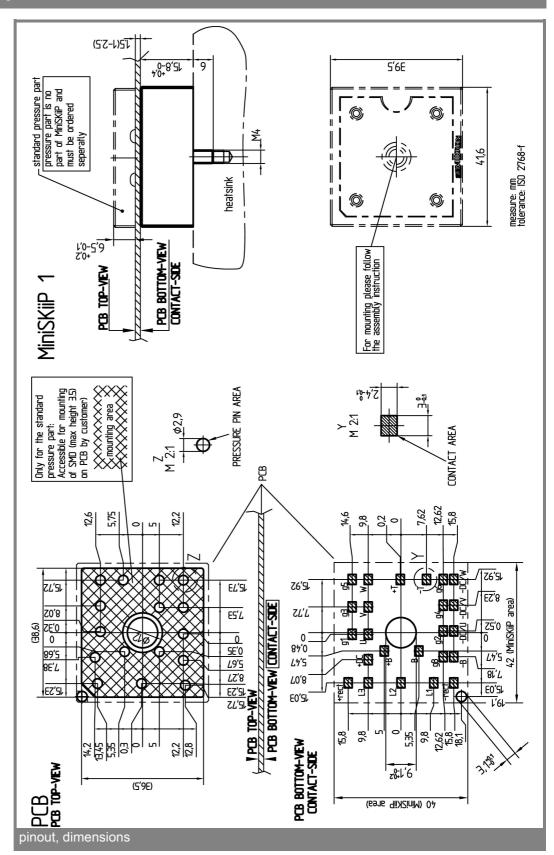
Target Data

Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 5 kVA
- Typical motor power 2,2 kW


Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	T _s = 25 (70) °C		Α				
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α				
V_{GES}		± 20	V				
T _j		- 40 + 150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C		Α				
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α				
T _j		- 40 + 150	°C				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	35	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	220	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	240	A²s				
T _j		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	Α				
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characte	ristics	Γ _s = 25 °C, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CEsat}	$I_C = 10 \text{ A}, T_i = 25 (125) ^{\circ}\text{C}$		2 (2,2)	2,5 (2,7)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$	3	4	5	V				
V _{CE(TO)}	T _j = 25 (125) °C		1,2 (1,1)		V				
r _T	T _j = 25 (125) °C		80 (110)	120 (150)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,62		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,13		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,06		nF				
R _{th(j-s)}	per IGBT		1,5		K/W				
t _{d(on)}	under following conditions		20		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns				
t _{d(off)}	$I_C = 10 \text{ A}, T_j = 125 ^{\circ}\text{C}$		225		ns				
t _f	$R_{Gon} = R_{Goff} = 60 \Omega$		15		ns				
E _{on}	inductive load		0,3		mJ				
E _{off}			0,23		mJ				
	Diode - Inverter, Chopper								
$V_F = V_{EC}$	I _F = 10 A, T _j = 25 (125) °C		1,4 (1,4)	1,7 (1,7)	V				
V _(TO)	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,1 (1)	V				
r _T	$T_j = 25 (125) ^{\circ}C$		45 (50)	60 (70)	mΩ				
$R_{th(j-s)}$	per diode		2,5		K/W				
I _{RRM}	under following conditions		20		Α				
Q_{rr}	I _F = 10 A, V _R = 300 V		1		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$		0,2		mJ				
	di _F /dt = 1200 A/μs								
Diode - Rectifier									
V_{F}	I _F = 15 A, T _j = 25 °C		1,1		V				
V _(TO)	T _j = 150 °C	0,8			V				
r _T	$T_j = 150 ^{\circ}C$		20						
$R_{th(j-s)}$	per diode		K/W						
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanical Data									
w			35		g				
M_s	Mounting torque	2		2,5	Nm				

SKiiP 02NEB066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.